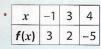
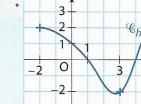
Soutien

81 Exercice test

Les trois fonctions f, g et h sont définies par :



• $q(x) = 3(7-x)^2$

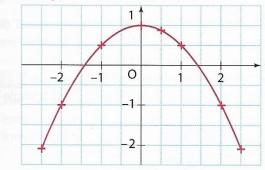


Déterminer l'image de 3 par chaque fonction.

82 f est la fonction définie sur \mathbb{R} par :

$$f(x) = -2x + 3.5$$

- a) Vérifier que f(3) = -2, 5.
- **b)** Calculer f(-1), $f(\frac{7}{2})$ et f(1,3).
- 83 f est la fonction définie sur l'intervalle [-2,5;2,5] par la courbe ci-dessous.



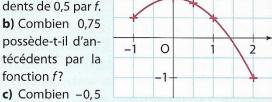
Recopier et compléter ce tableau.

x	-2,5	-2	-1	0	1	2
f(x)						

85 Exercice test

f est la fonction définie sur l'intervalle [-1; 2] par la courbe ci-dessous.

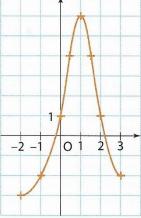
- a) Lire les antécédents de 0,5 par f.
- b) Combien 0,75 possède-t-il d'antécédents par la



1

possède-t-il d'antécédents par la fonction f?

- 86 f est la fonction définie sur [-2;3] par la courbe ci-contre.
- a) Déterminer les abscisses des points d'ordonnées -2 de la courbe.
- b) En déduire les antécédents de -2 par f.
- c) Déterminer les antécédents de 1 et 6 par f.



g est la fonction définie sur [0,5;10] par :

$$g(x) = \frac{x+1}{x}$$

- a) Tracer à l'écran de la calculatrice la courbe représentative de la fonction q.
- b) En lisant sur l'écran de sa calculatrice, Corentin affirme: «0,8 est la solution de l'équation g(x) = 2,3». A-t-il raison? Expliquer.

REPONSES: Ex 81: Tableau: l'image de 3 est 2 / Courbe: L'image de 3 est -2 / Expression $g(3) = 3(7-3)^2 = 3(7-3)^2$ $3 \times 16 = 48$

Ex 82 : a)
$$f(3) = -2 \times 3 + 3.5 = -6 + 3.5 = -2.5$$
 b) $f(1) = 1.5$ $f(\frac{7}{2}) = -3.5$ $f(1.3) = 0.9$

b)
$$f(1) = 1.5$$
 $f(\frac{7}{2}) = -3.5$ $f(1.5)$

Ex 83:

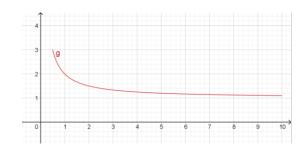
х	-2,5	-2	-1	0	1	2
f(x)	-2	-1	0,5	1	0,5	-1

Ex 85 : a) Les antécédents de 0,5par f sont -1 et 1. **b)** 0,75 a deux antécédents par f. **c)** -0,5 a un seul antécédent par f.

Ex 86 : a) Les points d'ordonnée -2 de la courbe ont pour abscisses -1 et 3.

- **b)** Les antécédents de -2 par f sont donc -1 et 3.
- c) Les antécédents de 1 par f sont 0 et 2. L'antécédent de 6 par f est 1.

Ex 87:



On vérifie en calculant l'image de
$$0.8$$
:
$$g(0.8) = \frac{1+0.8}{0.8} = \frac{1.8}{0.8} = \frac{18}{8} = \frac{9}{4} = 2,25$$

L'affirmation de Corentin est donc fausse, même si c'est une APPROXIMATION correcte de l'antécédent de 2,3.

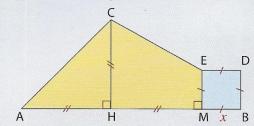
AP Fonctions 1 - Modéliser avec une fonction

Approfondissement

92 [AB] est un segment de longueur 8 cm. M est un point variable de ce segment et H est le milieu du segment [AM].

C est un point tel que le triangle AHC est rectangle isocèle en H.

D et E sont des points du même côté que C par rapport à (AB) tels que BMED est un carré.

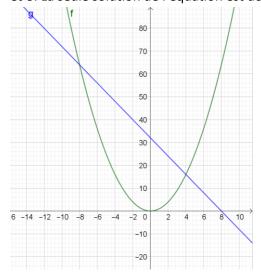


On note x la longueur MB en cm.

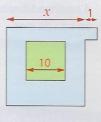
- **1. a)** Préciser à quel intervalle appartient x.
- **b)** Exprimer en fonction de x les aires du carré BMED et du quadrilatère AMEC.
- **2.** On se propose de déterminer la position du point M pour que l'aire du carré BMED soit le double de l'aire du quadrilatère AMEC.
- a) Traduire ce problème par une équation.
- **b)** À l'écran de la calculatrice, tracer les courbes représentatives de $x \mapsto x^2$ et $x \mapsto 32 4x$.
- **c)** Lire graphiquement la réponse au problème, puis vérifier par le calcul.

Ex 92:

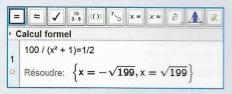
- **1.** a) $x \in [0; 8]$ b) $A_{BMED} = x^2$ et $A_{AMEC} = A_{AHC} + A_{HMEC} = 2(8-x)$
- 2. a) Il faut résoudre $x^2 = 2 \times 2(8 x)$ soit $x^2 = 32 4x$
 - **b) et c)** Il y a deux points d'intersection mais un seul dont l'abscisse est dans le domaine entre 0 et 8. La seule solution de l'équation est donc 4.



93 Un paysagiste établit un projet de bassin composé d'un carré de 1 m de côté accolé à un carré de x mètres de côté, dans lequel se trouve un îlot carré de 10 m de côté. a) Expliquer pourquoi $x \ge 10$.



b) Pour cette situation, quelle est la signification de l'affichage ci-dessous?



Ex 93:

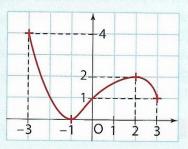
- a) Le côté du carré doit être supérieur à celui de l'ilôt. On doit donc avoir $x \ge 10$.
- b) L'équation résolue peut s'écrire $x^2+1=200$ ce qui serait l'équation traduisant la situation suivante : le bassin doit avoir une surface deux fois plus grande que celle de l'ilôt, ou encore : la surface occupée par l'eau doit être la même que celle de l'ilôt.

Seconde

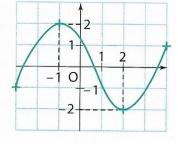
AP Fonctions 2 – Utilisation du tableau de variations - Soutien

89 Exercice test

f est la fonction définie sur [–3;3] par la courbe tracée dans le repère ci-contre. Dresser le tableau de variation de f.



90 f est la fonction définie sur l'intervalle [-3;4] par la courbe tracée dans le repère ci-contre.



Recopier et compléter.

- a) f est croissante sur $[-3; \cdots]$.
- **b)** f est décroissante sur $[-1; \cdots]$.
- c) f est croissante sur $[\cdots; 4]$.
- **d)** f est décroissante sur $[\cdots; 1]$.

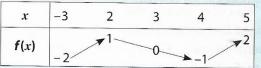
91 f est une fonction définie sur l'intervalle [-3;5] telle que :

- f est décroissante sur [-1; 2];
- f est croissante sur [-3;-1] et sur [2;5];
- f(-3) = -2; f(2) = 1; f(-1) = 4; f(5) = 5.

Dresser le tableau de variation de f.

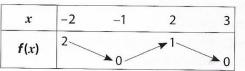
93 Exercice test

Voici le tableau de variation d'une fonction f définie sur l'intervalle [-3;5].

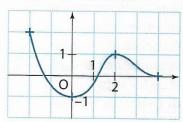


Tracer une courbe susceptible de représenter graphiquement la fonction f.

95 Voici le tableau de variation d'une fonction f définie sur l'intervalle [-2;3].



Naomi a tracé la courbe ci-contre pour représenter f. Qu'en pensez-vous?



96 f est une fonction définie sur l'intervalle [-3;4] telle que :

- f est décroissante sur [-3;2];
- f est croissante sur [2;4];
- f(-3) = 2, f(2) = -2, f(0) = f(3) = 0.

Tracer une courbe susceptible de représenter graphiquement la fonction f dans un repère.

Réponses:

Ex 89

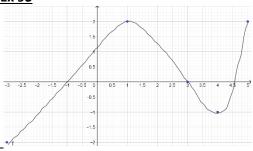
х	-3	- 1	2	3
f(x)	4~	\ _0/	▼ 2	1

Ex 90: a) [-3; -1] b) [-1; 2] c) [2; 4] d) [-1; 1]

Ex 91

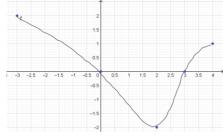
ĺ	x	-3	- 1	2	5
	f(x)		V 4 \		_ 5
		-2		1	•

Ex 93



Ex 95 : Le point de la courbe (-1;0) qui représente un minimum de la fonction n'est pas respecté sur le dessin de Naomi.

Ex 96:



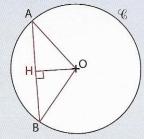
AP Fonctions 2 – Résoudre des problèmes d'optimisation

Approfondissement

101 A et B sont deux points variables d'un cercle $\mathscr C$ de centre O et de rayon 1.

H est le pied de la hauteur issue de O du triangle OAB.

On pose x = AB.



- 1. Quel est l'intervalle décrit par x?
- **2.** f est la fonction définie par f(x) = OH.
- a) Sans déterminer f(x), dresser le tableau de variation de la fonction f.
- **b)** Déterminer les valeurs de x pour lesquelles $f(x) \ge 0,5$.
- **3.** g est la fonction qui à x associe l'aire du triangle OAB.
- a) Démontrer que $g(x) = \frac{x}{4}\sqrt{4-x^2}$.
- **b)** Avec la calculatrice, déterminer des valeurs approchées du maximum de g et de la valeur de x pour laquelle il est atteint.

Un cylindre est dit équilibré si la somme de son diamètre et de sa hauteur est égale à 10.
On note x le diamètre d'un cylindre équilibré.

Déterminer une valeur approchée au centième du diamètre du cylindre pour lequel le volume sera maximal.

Ex 101:

1. $x \in [0; 2]$.

2. a)

х	0	2
f(x)	1	
		0
		U

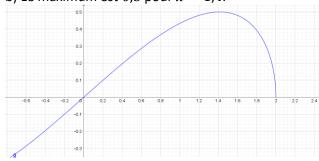
b) D'après le théorème de Pythagore dans OAH on a $\left(\frac{x}{2}\right)^2$ +

$$f(x)^2 = 1$$
. D'où $f(x) = \sqrt{1 - \frac{x^2}{4}} = \sqrt{\frac{4 - x^2}{4}} = \frac{\sqrt{4 - x^2}}{2}$

On voit que f(x)=0.5 donne $AH=\frac{\sqrt{3}}{2}$ et donc $x=\sqrt{3}$. D'après la configuration, $f(x)\geq 0.5$ dès lors que $x\leq \sqrt{3}$.

3. a)
$$g(x) = A_{OAB} = \frac{xf(x)}{2} = \frac{x}{2} \frac{\sqrt{4-x^2}}{2} = \frac{x\sqrt{4-x^2}}{4}$$

b) Le maximum est 0.5 pour x = 1.4.



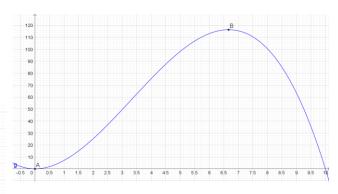
Ex 102 : On appelle x le diamètre. La hauteur du cylindre est donc 10 - x.

On doit avoir $x \ge 0$ et $10 - x \ge 0$ donc $x \le 10$. D'où $x \in [0; 10]$.

Le volume du cylindre est :

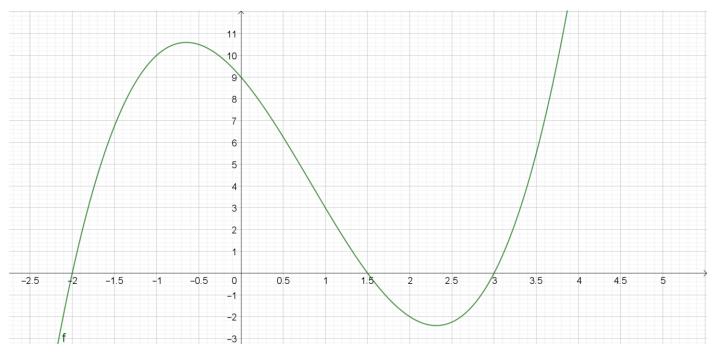
$$V(x) = aire_{base} \times hauteur = \pi \left(\frac{x}{2}\right)^2 \times (10 - x)$$

A la calculatrice, on estime que le maximum est atteint pour $x \approx 6.67$ et vaut environ 116.36.



Exercice 1:

- 1. Compléter à l'aide du graphique les phrases suivantes :
 - a) L'image par f de 0 est
 - **b)** 5 est l'image par *f* de
 - c) Les antécédents de 1 par f sont
- 2. Résoudre les équations suivantes graphiquement :
 - a) f(x) = 7
- b) f(x) = 0 c) f(x) = 11
- d) f(x) = -2



Exercice 2: f est définie sur \mathbb{R} par $f(x) = -2x^2 - x + 1$

- **1.** Déterminer par le calcul les images de $0, -3, 1, \sqrt{2}, \frac{2}{3}$ et $1 \sqrt{3}$.
- 2. Déterminer par le calcul les antécédents de 1.
- **3.** Montrer que f(x) = (x+1)(-2x+1)
- **4.** En déduire les antécédents de 0 par f.

Exercice 3: On considère le tableau de variations d'une fonction f définie sur [-3; 4]

x	-3	- 1	2	4
f(x)	5	<u> </u>	№ 8 ~	5

Dans chaque cas, comparer les deux nombres lorsque c'est possible :

- a) f(-2) et f(-1,5)
- d) f(-2) et f(3)
- b) f(-2,5) et f(0)
- e) f(0) et f(1,5)
- c) f(-0.5) et f(1)
- f) f(3,5) et f(1)

Indications ex 2:

- **1.** Remplacer x par la valeur donnée dans l'expression de f(x).
- **2.** Il faut résoudre l'équation f(x) = 1
- **3.** Développer le membre de droite pour retrouver f(x).
- **4.** Il faut résoudre f(x) = 0, utilisant la factorisation réalisée à la question précédente.

Réponses:

Exercice 1 : Déterminer les ensembles de définitions des fonctions suivantes :

$$f(x) = \frac{3}{x - 1}$$

$$g(x) = \frac{-4x+1}{x^2+1}$$

$$h(x) = \sqrt{2x - 4}$$

$$k(x) = \frac{3x - 1}{2x + 1} - \frac{1}{x + 7}$$

$$F(x) = \frac{5}{x^2 - 16}$$

Exercice 2 : Déterminer les ensembles de définition des fonctions décrites ci-dessous.

- **1-** ABCD est un carré de côté 5, M un point mobile sur [AB] tel que AM = x. f est la fonction qui à chaque valeur de x associe le périmètre du triangle MDC.
- **2-** \mathcal{C} est un cercle de centre O, de diamètre [AB] avec AB=8 et N un point mobile du segment [OB] tel que ON=x. \mathcal{A} est la fonction qui à toute valeur de x associe l'aire de la surface comprise entre le cercle \mathcal{C} et le cercle de centre O et de rayon ON.
- **3-** Alia veut inviter des amis à sa fête d'anniversaire. Elle aimerait réserver une salle de jeux d'énigmes et a un budget de 225 euros maximum. Une entrée coûte 19,99 €. On s'intéresse au prix \mathcal{P} que va payer Alia en fonction de son nombre d'invités x.
- **4-** RECT est un rectangle de périmètre 18~cm. On étudie son aire \mathcal{A} en fonction de la longueur x de RE, sachant que $CT \ge 1$.

Réponses:

Exercice 1: $D_f = \mathbb{R} - \{1\}$, $D_g = \mathbb{R}$ car $x^2 + 1 > 0$ pour toute valeur de x, $D_h = [2; +\infty[$ car on doit avoir $2x - 4 \ge 0$ pour pouvoir calculer h(x), $D_k = \mathbb{R} - \left\{-\frac{1}{2}; -7\right\}$ afin qu'aucun des deux dénominateurs ne soit nul, $D_F = \mathbb{R} - \{-4; 4\}$ car on doit avoir $x^2 - 16 \ne 0$, il faut donc exclure 4 et -4 de l'ensemble de définition.

Exercice 2:

- 1- $0 \le x \le 5 \text{ donc } D_f = [0; 5]$
- 2- $0 \le x \le 4 \text{ donc } D_f = [0; 4]$
- 3- x doit être un nombre entier naturel, et on doit avoir $19,99 \times (x+1) \le 225$. Donc $x \le 10$. x est un entier naturel inférieur ou égal à 10.
- 4- On doit avoir 2(RE+CT)=18 donc RE+CT=9 et x=RE=9-CT. Comme $CT\geq 1$ alors $RE\leq 8$. De plus x est une longueur donc $x\geq 0$. On a donc $D_{\mathcal{A}}=[0;8]$.